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Copper Indium Gallium Diselenide (CIGS) is a compound semiconductor material from the group of I-

III-VI. The material is a solid solution of copper, indium and selenium (CIS) and copper, gallium and sele-

nium with an empirical formula of CuIn(1 – x)GaxSe2, where 0  x  1. CIGS has an exceptionally high ab-

sorption coefficient of more than 105 cm – 1 for 1.5 eV. Solar cells prepared from absorber layers of CIGS 

materials have shown an efficiency higher than 20 %. CuIn(1 – x)GaxSe2 (x  0.3) nanocrystalline compound 

was mechanochemically synthesized by high-energy milling in a planetary ball mill. The phase identifica-

tion and crystallite size of milled powders at different time intervals were carried out by X-ray diffraction 

(XRD). The XRD analysis indicates chalcopyrite structure and the crystallite size of about 10 nm of high-

energy milled CIGS powder after two and half hours of milling. An attempt for preparing the thin film 

from CIGS nanocrystalline powder was carried out using the flash evaporation technique. Scanning elec-

tron microscopy (SEM) reveals uniform distribution of CIGS particles in thin film. 
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1. INTRODUCTION 
 

The application of nanotechnology is regarded as an 

important factor for photovoltaic application. It will 

achieve broad economic acceptance through considera-

ble cost savings and increase in efficiency. This devel-

opment is based on new materials and solar cell types 

with simpler production processes [1]. However, the 

conventional vacuum based evaporation methods have 

drawbacks such as the process complexity, high produc-

tion costs and issues regarding the scaling up. Before 

the commercialization of the solar cells, these factors 

need to be considered. 

In this regard, a nanoparticle based preparation of 

the CIGS material and the absorber layer is believed to 

be a promising process due to a relatively low cost sim-

ple preparation method and flexibility for scaling up 

supports the recent advances in nanoparticle synthesis 

technologies. The various processes for the synthesis of 

CIGS nanoparticles/nanocrystalline powder are colloidal 

process [2], precipitation [3], thermolysis [4] and mech-

nical alloying [5]. The advantage of the nano size effect 

of particles is that it lowers the melting temperature of 

the material [6] and therefore an exothermal reactive 

sintering occurs. 

Pure metal powders in desired stoichiometry are 

generally milled in planetary ball mill. The particles are 

repeatedly flattened, fractured and rewelded during the 

process of milling. The kinetic energy of alloying with 

phase transformation during milling depends upon en-

ergy transferred by balls to the powder [8]. Copper In-

dium diselenide (CIS) nanocrystalline powder is very 

easy to prepare without mechanical milling. Addition of 

Gallium (Ga) in the CIS could make this process diffi-

cult, due to the low melting temperature of Ga. Thus, 

mechanochemical synthesis is considered as a suitable 

method. The major advantage of Ga addition is that 

band gap is increasing from 1.02 to 1.66 eV, as the con-

tent of Ga increases from 0 to 1. In CIGS based thin 

film solar cell highest efficiency reported was 20.3 % [7] 

for addition of 0.3 of Ga.  

In this work the CIGS nanocystalline powder was 

synthesized by mechanochemical process, i.e. ball mill-

ing process. Effect of milling time on the material phase 

formation, and crystallite size has been discussed. The 

phase identification and crystallite size measurement 

were carried out using the X-ray Diffraction (XRD) 

method. In addition to this an attempt was made to 

prepare CIGS thin film on glass substrate using flash 

evaporation technique. The surface morphology of the 

CIGS thin film was studied using Scanning Electron 

Microscopy (SEM).  

 

2. EXPERIMENTAL 
 

Copper (Cu), Indium (In), Selenium (Se) and Galli-

um (Ga) are taken in stoichiometric quantities accord-

ing to Cu1In(1 – x)GaxSe2 where x  0.3. The mixed pow-

der was blended in a rolling milling for 30 min prior to 

high-energy milling. High-energy milling was carried 

out in a 250 ml capacity twin-bowl type planetary ball 

mill of M/s. Insmart Systems, Hyderabad. The milling 

was carried out in tungsten carbide lined stainless 

steel vial using tungsten carbide balls of 10 mm and 

6 mm diameters as grinding bodies. The photograph of 

twin-bowl type planetary ball mill system is shown in 

Fig. 1. 
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Fig. 1 – Twin-bowl type planetary ball mill system. Inset fi-

gure shows the tungsten carbide (WC) lined stainless steel 

vial and WC balls 
 

The mill was operated at a speed of 400 rpm and ball to 

charge ratio of 10 : 1. Argon gas was purged inside the 

jars before milling to avoid any oxidation during high-

energy milling. During the course of milling, powder 

samples were drawn at an interval of 30 minute for 

characterization by X-ray diffraction (XRD). The pow-

der diffraction profiles were obtained using Brucker 

AXS, D8 advance diffractometer, within the 2θ range of 

20°-80° at a scan speed of 3° per min using Cu target 

and Cu-Kα radiation of 0.154056 nm wavelength at a 

power rating of 40 kV and 40 mA. 

The thin film of CIGS was prepared on glass sub-

strate by flash evaporation technique from CIGS nano-

crystalline powder in vacuum coating unit of HIND 

HIVAC, Banglore (model no. 15F6). The surface mor-

phology of thin film was studied using Scanning Elec-

tron Microscope model JEOL JSM-5610 LV at different 

magnifications [9]. 

 

3. RESULTS AND DISCUSSIONS 
 

3.1 XRD Analysis 
 

XRD profile of milled powder samples at different 

milling time is shown in Fig. 2. Main peaks appear at 

(112), (220)/(204), (116), and (400) planes indicating 

tetragonal chalcopyrite structure of Cu(In, Ga)Se2 

(CIGS) compound. Peaks appear to be sharp indicating 

crystalline phase of compound. With the CIGS phase 

and additional CuSe phase is also observed as milling 

time increases, particularly after 2 h milling time. The 

d-values of CuSe phase match with the PDF-ICDD 

no. 26-0556, which shows its hexagonal structure. At 

room temperature, CuSe exists as hexagonal phase but 

at 48 °C, it is converted to orthorhombic form and re-

verts back to hexagonal form at 120 °C [10]. The pres-

ence of CuSe in this case after 2 h milling may be  

due to increase in temperature during high- energy ball 

milling. During milling the frictional forces between jar 

and grinding media leads to moderate increase in tem- 

 
 

Fig. 2 – XRD spectra of CIGS powder prepared by ball milling 

having a different milling time 1 h (a), 1.5 h (b), 2.0 h (c), and 

2.5 h (b) 
 

perature during milling. In Fig. 2 the crystalline planes 

for CuSe are (100), (001), (110), and (210) as indicated.  

The broadening of major peak i.e. (112) is clearly ob-

served from the XRD spectra. This indicates that the 

crystallite size reduces with increase in milling time 

from 1 h to 2.5 h. Relatively broad X-ray peaks were ob-

tained for 2.5 h ball milling time, which are indicative of 

crystallite size in nano size regime. Crystallite size was 

calculated using Scherrer’s equation for different milling 

time as given in Table 1. The Table 1 also give the inter-

planar distance (d), corresponding 2θ values and Full-

width half maximum (FWHM) of CIGS nanocrystalline 

powder at different milling time. 
 

Table 1 – Crystallite size and interplanar distance of CIGS 

nanocystalline powder at different milling time 
 

Milling 

time (h) 
2θ (o) 

FWHM 

(radians) 

Crystallite 

Size, 

D (nm) 

d –

spacing 

(nm) 

1 27.05 0.01047 13.62 0.3295 

1.5 27.05 0.01134 13.62 0.3295 

2 27.05 0.01134 12.58 0.3295 

2.5 27.1 0.01309 10.9 0.3289 
 

The XRD spectra shown in Fig. 2 have been com-

pared to standard data, PDF-ICDD no. 35-1102, it shows 

a slight shift of the peaks towards higher 2θ angles. 

Shifting to the higher diffraction angles may due to lat-

tice distortion and internal stresses induced during the 

course of milling [5]. The internal stresses modify the 

lattice parameters and consequently produce an angular 

shift of XRD peak. The XRD profiles when compared for 

different milling times reveal minor shift of peaks to-

wards higher 2θ angles, especially for 2.5 h of milling. 

This shift is possibly due to integration of gallium atom 

in place of indium and thus changes in lattice parame-

ters. When relatively smaller gallium atoms substitute 

for indium atoms in the lattice, it results in gradual 

change in lattice parameters (d – spacing) [11]. The Lat-

tice parameters ‘a’ and ‘c’ were calculated using Equa-

tion 1. 
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The ‘a’ and ‘c’ values obtained match closely with 

the standard data i.e. PDF-ICDD no. 35-1102. Vegard’s 

law states that there is a linear relationship between 

the lattice parameter ‘c’ and the composition x of  

gallium. The value of lattice parameter ‘c’ decreases 

linearly with gradual decrease in indium content [4]. 

As milling duration increases values of lattice parame-

ter ‘c’ decreases as shown in Table 2. This result sup-

ports the fact that milling does improve the composi-

tion of CIGS compounds by increasing gallium rich 

phases. Also, it reduces the probability of generation of 

the secondary crystalline phases. 

CIGS compound possess tetragonal chalcopyrite 

structure with Bravais lattice values given as {x, y, 

z}  {1, 1, 2}. Each group I element (Cu) and group III 

element (In/Ga) atoms has four bonds to group VI ele-

ment (Se). In turn each Se atom has two bonds to Cu 

and two bonds to In/Ga. As the strength of the group I-

VI and group III-VI bonds are in general different, the 

ratio of the lattice constants c/a is not exactly ‘2’ [11]. 

The c / a ratios for CIGS nano-crystalline powder is in 

good agreement with the literature as shown in Table 2. 

Quantity ‘U’ equals to (2 – c / a) is a measure of the te-

tragonal distortion in chalcopyrite materials. 
 

Table 2 – FWHM, lattice constants ‘a’ and ‘c’, with the tetrag-

onal distortion factor (U) of CIGS nanocystalline powder at 

different milling time. 
 

Milling 

Time (h) 

FWHM 

(radians) 
a (Å) c (Å) 

c / a  

(Å) 

U  2 –

c / a 

1 0.01047 5.698 11.47 2.012 – 0.0129 

1.5 0.01134 5.715 11.39 1.993 0.0070 

2 0.01134 5.698 11.46 2.011 – 0.0112 

2.5 0.01309 5.698 11.40 2.007 – 0.0007 
 

As seen from the Table 2 the tetragonal distortion 

factor is near to zero at 2.5 h milling time i.e. – 0.0007. 

This indicates the minimum stress is present in the 

CIGS powder prepared at higher milling time. 

 

3.2 SEM Analysis of CIGS Thin Film 
 

SEM micrographs of flash evaporated CIGS thin film 

prepared from nanocrystalline powder at different mag-

nifications are shown in Fig. 3a and 3b. The thin films 

are deposited on glass slide of 7.5 cm  2.5 cm at a pre-

disposition temperature of 523 K. The thickness of the 

film was kept near to 250 nm. The film thickness was 

measured using the quartz crystal thickness monitor. 

The film is quiet dense with average distance between 

grains is 0.5 to 1 m as seen in Fig. 3. Grains shown in 

SEM images are worm shaped with approximately 

0.5 m in length and 0.08-0.1 m in width. These worms 

like grains possess a white shinning appearance. In the 

early stages of deposition, adsorption occurs at discrete 

nucleation sites. As atoms approach the surface, islands 

are formed which grows in size until they merge with 

neighboring islands to form a continuous film. The pro-

bability of migration for adsorbed atom on the surface is 

relatively less at lower substrate temperature. 

Deposition at lower substrate temperature leads to 

formation of small isolated grains with large number of 

voids. Surface migration increases at higher substrate 

temperature resulting in enhanced interaction of ad-

sorbed atoms to form large grains [13]. This will have a 

major effect on the size and number of voids present in 

the film. At higher substrate temperatures, i.e. 573 K, 

grain distribution becomes uniform and dense as shown 

in Fig. 3. The surface morphology shows nearly uniform 

distribution of grains. 
 

 
a 

 

 
b 

 

Fig. 3 – SEM microphotograph of CIGS thin film (thickness 

250 nm) deposited at 523 K substrate temperature prepared 

from nanocrystalline powder at 500X (a) and 2000X (b). 

 

4. CONCLUSIONS 
 

High-energy ball milling of elemental of Copper, In-

dium, Gallium and Selenium appears a suitable pro-

cess for the production of Cu(In, Ga)Se2 (CIGS) nano-

crystalline powder having tetragonal chalcopyrite 

structure. Minor secondary CuSe phase appears after 

2 h milling. The milled CIGS powder has crystallite 

size less than 10 nm after two and half hours (2.5 h) of 

milling. Scanning Electron Microscopy (SEM) of as-

deposited CIGS thin film by flash evaporation tech-

nique at a substrate temperature of 523 K shows shin-

ing white worm like grains uniformly distributed on 

the surface.  
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